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A fast modular numerical method for solving general moving interface problems
is presented. It simplifies code development by providing a black-box solver which
moves a given interface one step with given normal velocity. The method combines an
efficiently redistanced level set approach, a problem-independent velocity extension,
and a second-order semi-Lagrangian time stepping scheme which reduces numerical
error by exact evaluation of the signed distance function. Adaptive quadtree meshes
are used to concentrate computational effort on the interface, so the method moves
anN-element interface inO(N log N)work per time step. Efficiency is increased by
taking large time steps even for parabolic curvature flows. Numerical results show
that the method computes accurate viscosity solutions to a wide variety of diffi-
cult geometric moving interface problems involving merging, anisotropy, faceting,
nonlocality, and curvature. c© 2000 Academic Press

1. INTRODUCTION

We present an efficient accurate method for general moving interface problems. Our
method functions as a black-box solver, interrogating the interfacial velocity only through
a user-supplied module. It also

• merges and breaks complex topology automatically via a level set approach with
general velocity extension,
• takes large time steps via stable second-order semi-Lagrangian time stepping schemes,

and
• resolves anN-element interface with optimalO(N log N) work per time step by

adaptive quadtree meshing and efficient geometric algorithms.
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The work extends the first-order semi-Lagrangian uniform mesh method for geometric
moving interfaces of [19], the adaptive quadtree version of [20], and the quadtree-based fast
redistancing algorithm of [18]. The present work uses second-order accurate time stepping
which greatly reduces numerical dissipation (Section 1.2), fast adaptive quadtree meshing,
and a faster redistancing scheme which enhances the semi-Lagrangian approach by exact
interpolation (Section 1.3). The fast new quadtree-based velocity extension algorithm of
Section 2 allows our method to couple with any user-supplied interfacial velocity, such
as the geometric velocity built in Section 3 and used in the computational experiments of
Section 4.

1.1. Overview

A moving interface is the boundary0(t)= ∂Ä(t) of a setÄ(t)⊂Rd depending on time
t . If Ä is sufficiently smooth, then0(t) has an outward unit normalN, a curvatureC and
a velocity V at each point. Amoving interface problemis a closed system of equations
which specifiesV as a functional of0, possibly in a highly indirect and nonlocal way.
Figure 1 shows some typical solutions of geometric moving interface problems, where
V =V(x, t, N,C) depends only on the local position and geometry of0(t).

The main difficulty in moving interfaces is the correct handling of merging, breaking, and
other topological changes. This difficulty can be overcome by reformulating the problem
on a fixed domain, using the signed distance function to0(t) defined by

ϕ(x, t) = ± min
γ∈0(t)

‖x − γ ‖. (1)

If ϕ is taken positive inÄ(t) thenN,C andV can be computed fromϕ by [22]

N = ∇ϕ/‖∇ϕ‖, C = −∇ · N, V = ϕt∇ϕ/‖∇ϕ‖2. (2)

If the specified velocity functionalV on0 is extended smoothly to a vector fieldW(x, t)
onRd, then solving the advection equation

ϕt −W · ∇ϕ = 0 (3)

moves the zero set0(t) of the solutionϕ with velocity V and hence solves the moving
interface problem. Topological changes are handled automatically.

FIG. 1. Sample moving interfaces computed with our method: (a) initially circular bubbles after passive
transport in a shearing flowV =V(x), (b) faceted shapes merging and growing under a sixfold anisotropic
velocity V =V(N), and (c) a complex polygonal shape shrinking under curvature flowV =C.N.
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“Level set” methods [11] move0(t) via the advection equation (3). An initial signed
distance functionϕ(x, 0) and an extended velocity fieldW are built,ϕ is advected and con-
toured when0(t) is required. While these methods handle topology automatically, there
are some potential difficulties. They can be expensive since the dimension increases, par-
ticularly if uniform meshes are used. One must be careful to obtain the correct “viscosity
solution” of the advection equation. Extending the velocity off0(t) can be difficult. Level
set methods are not naturallymodular: a new code must be written for each new problem
to be solved, since the velocity evaluation is intertwined with the moving interface code by
velocity extension. Our method removes these barriers: we solve the advection equation on
an adaptive quadtree mesh to eliminate the cost of going up a dimension. Correct viscos-
ity solutions are obtained by semi-Lagrangian time stepping with exact evaluation of the
signed distance function and frequent efficient redistancing. A general problem-independent
velocity extension makes our method modular and easy to apply.

Our numerical method moves interfaces by the second-order semi-Lagrangian time step-
ping scheme presented in Section 1.2 and three independent computational modules:

• redistancing to produce the signed distanceϕ from a given interface0 (Section 1.3),
• contouring to extract the zero set0 from the solutionϕ of Eq. (3) (Section 1.3), and
• extension of interfacial velocitiesV defined on0 to global smooth velocitiesW defined

everywhere onRd (Section 2).

1.2. Semi-Lagrangian Time Stepping

The advection equation (3) can be solved by many time stepping schemes. We use semi-
Lagrangian schemes which offer some unique advantages: explicit unconditional stability,
natural adaptivity, and modularity. These schemes are widely used for modeling linear
advection in atmospheric science [13, 15], where unconditional stability eliminates the
stringent time-step restriction encountered on small cells by Eulerian schemes [14] and
have been applied to moving interfaces in [19, 20]. They rely on the observation that the
advection equation propagates solution values along characteristicsx= s(t) satisfying

ṡ(t) = −W(s(t), t). (4)

Thus the solutionψ(x)=ϕ(x, t + k) at timet + k can be evaluated by solving the charac-
teristic ODE (4) backward in time fromx= s(t + k) to s(t) and settingψ(x)=ϕ(s(t), t).
Standard ODE theory [5] guarantees a unique solutions(t) for any x if W is globally
Lipschitz, so backward characteristics do not cross and the procedure is well defined [13].
Semi-Lagrangian methods adopt this two-step approach, solving the characteristic ODE
numerically fromx= s(t + k) to s(t) and then approximating the off-grid valueϕ(s(t), t)
by interpolation [9] or monotone advection [12] to preserve stability. Our moving interface
method evaluates the signed distanceϕ(s(t), t) exactly and omits the approximation.

Semi-Lagrangian moving interface methods which use the first-order Courant–Isaacson–
Rees (CIR) scheme [1]

ψ̃(x) = ϕ(x̃, t) = ϕ(x + kW(x, t), t) (5)

to solve the advection equation were developed in [19, 20]. Their effectiveness has been
heuristically justified and experimentally verified for many moving interface problems
involving passive transport, geometry, dynamic topology, faceting, and curvature. The
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convergence theory of these methods is straightforward ifV =V(x, t, N), because the
advection equation is hyperbolic. For curvature flowV =C, the advection equation is
parabolic and the main barrier to convergence is the Courant–Friedrichs–Lewy (CFL) con-
dition, which restricts the time step of most explicit methods byk≤O(h2) to ensure infor-
mation propagates correctly and the computation remains stable. Semi-Lagrangian moving
interface methods are explicit yet unconditionally stable and can satisfy the CFL condition
by nonlocal velocity evaluation, permitting convergence with large time stepsk=O(h)
even for parabolic problems [19, 20].

The specific semi-Lagrangian time stepping scheme used in our method combines a CIR
predictor (5) with a second-order trapezoidal corrector

ψ(x) = ϕ
(

x + k

2
W(x̃, t)+ k

2
W̃(x, t + k), t

)
: (6)

the extended velocityW̃ is evaluated fromψ̃ at time t + k. This predictor–corrector pair
is second-order accurate in time, explicit, and unconditionally stable. Each newψ value
is an exactϕ value so the maximum ofϕ can never increase. The CIR predictor (5) used
as a time-stepping scheme is also unconditionally stable, but only first-order accurate and
extremely dissipative [7].

Both predictor and corrector may also incorporate local iteration, where the first ap-
proximation x∗ = x+ kW(x, t) (respectively,x∗ = x+ k

2W(x̃, t)+ k
2W̃(x, t + k)) to the

foot of the characteristic throughx is repeatedly replaced byx+ kW(x∗, t) (respectively,
x+ k

2W(x∗, t)+ k
2W̃(x, t + k)). Local iteration does not alter the order of accuracy of the

time stepping scheme, but reduces numerical dissipation noticeably in some experiments.
Since our advection velocityW(x, t) extends the user-specified velocity functionalV

defined on the zero set0(t) of ϕ(x, t), each semi-Lagrangian time step requires several
complex global operations. Starting with an interface0(t), our method carries out the
following steps to produce the new interface0(t + k):

1. Evaluate the signed distanceϕ from the interface0(t).
2. Evaluate the interfacial velocityV of 0(t) by a user-supplied module.
3. ExtendV to a global advection velocityW.
4. Advanceϕ via W to the predicted CIR solutioñψ defined by Eq. (5).
5. Contourψ̃ to get the predicted interfacẽ0.
6. Evaluate the predicted interfacial velocityṼ of 0̃.
7. ExtendṼ to a global advection velocitỹW.
8. Advanceϕ via W andW̃ to the corrected solutionψ defined by Eq. (6).
9. Contourψ to get0(t + k).

Each of these steps can be efficiently implemented via the quadtree mesh which we now
define.

1.3. Quadtree Meshes and Fast Algorithms

DEFINITION. A quadtree meshcovering a cubeR in Rd is composed of square cells
organized intoL levels, with each cell on levell + 1 contained in some level-l cell, and
stores the following information:

• A cell list of cellsCj , grouped by levell , with the root cellC0= R on levell = 0.
• A vertex listlocating cell vertices and centers inRd.
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Each cellC in the cell list contains:

• Its levell and location(i1, . . . , i d) in a uniformd-dimensional mesh with 2l cells per
side.
• The indices in the vertex list of the 2d+ 1 cell vertices and centers.
• The indices in the cell list of its parent (if there is one), children (if any), and neighbors

(if any).

Given anL-level quadtree, many operations related to searching and sorting can be done
efficiently [2]. Finding the tree cell which contains a pointx, for example, requiresO(L)
checks of bits in the binary representation ofx. An L-level quadtree can be built by recur-
sively splitting cells into 2d subcells, according to a splitting criterion which characterizes
the particular quadtree being built. Applications of quadtrees in Steps 1–9 include velocity
extension (Section 2) and:

The distance tree.An interface0 composed ofN piecewise linear elements can be
efficiently resolved on a tree mesh built by splitting any cellC whose edge length exceeds
its minimum distance

d(C, 0) = min
x∈C

min
γ∈0
‖x − γ ‖ (7)

to 0. Such a tree resolves0 at optimalO(N) cost, allows fastO(N log N) evaluation of
the signed distance function for0, and is used in Step 1 of our method. The following fast
redistancing algorithm based on [18] evaluatesϕ(x) at a new vertexx of a level-l cell C in
d2+ (1/(2 log 2)) logde steps ind dimensions:

• Start: Set the current minimum distancem to 0 equal to∞.

• Loop: While l ≥ 0 and the cubeC(x,m) with centerx and half-side lengthm is not
completely contained in the concentric triple ofC; replaceC by its parentC∗, find and
record a nearest element0∗j to x in the element list ofC∗, replacem by the minimum
distancem∗ from x to 0∗j , and replacel by l − 1.

• Sign: Given a nearest element0∗j to x, determine the sign ofϕ=±m∗ by checking
normal vectors of0∗j and its neighbors. Nearest elements forming an acute angle may
disagree on the sign ofϕ, so neighbors must be checked: see Fig. 2a.

This search strategy builds the distance tree inO(N log N) time and space complexity,
because the union of all triples of cells on any levell ≤ L =O(log N) intersectsO(N)
elements. The search always terminates in a bounded number of steps (see Fig. 2b). The
nearest element of0 which intersects the tripleT∗ of the parentC∗ of a tree cellC may
not be the nearest element of0 overall; nor need it be the nearest element of0 intersecting
the tripleT∗∗ of the grandparentC∗∗. But in d≤ 4 dimensions, any element intersecting
T∗ beats every element outside the tripleT∗∗∗ of the great-grandparentC∗∗∗. In general
dimensiond, the numbera of levels ascended is determined by the diagonal length of a
d-dimensional cube via the requirement 2a≥ 4

√
d or a≥ 2+ (1/(2 log 2)) logd.

The contour tree. The unknown zero set of a given functionψ can be efficiently resolved
on a quadtree built by splitting each cell whose edge length exceeds the minimum value
of |ψ | on the cell. Such quadtrees are built forψ and ψ̃ in Steps 4 and 8. This simple
approach to adaptive meshing takes advantage of the unique functional viewpoint inherent
in semi-Lagrangian methods, which define the solutionψ(x) at the new time step by the
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FIG. 2. (a) A pitfall in signingϕ(x): two nearest elements forming an acute angle may disagree about the
sign ofϕ(x). (b) The search strategy always terminates in at most three steps ind≤ 4 dimensions: any element
intersectingT∗ rules out all elements outsideT∗∗∗.

formula (6), which can be evaluated at any desired point. Most adaptive methods use local
derivative estimates and must recompute the solution when a trial mesh is refined [8].

Triangulation. For quadtrees in which adjacent cells differ in size by no more than a
factor of 2—such as the distance tree—cell vertices and centers can easily be triangulated
into conforming meshes [2]. Each cell in such a tree has 0 to 4 smaller neighbors ind= 2
dimensions, so a triangulation can be built from the six possible configurations shown in
Fig. 4. The distance tree for a simple interface0 is triangulated in Fig. 3.

Contouring. Given function valuesψ(x) at the vertices and centers of a triangulated
quadtree mesh, extracting the zero set of the continuous piecewise-linear interpolant on the

FIG. 3. (a) Six-level distance tree mesh for a simple interface and (b) triangulation of its cell vertices and
centers.
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FIG. 4. Possible triangulations of a two-dimensional tree cell.

triangulation is straightforward. Ind= 2 dimensions, for example, each triangle whereψ

changes sign contains a unique line segment where the linear interpolant toψ vanishes.
These line segments form a polygonal curve since the triangulation is conforming and the
interpolant is continuous. Following the polygonal zero curve as far as possible in both
directions produces an oriented component of0(t + k) with ψ >0 on its interior. Ind> 2
dimensions the contouring process is similar but slightly more complicated:d-dimensional
simplices replace triangles and(d− 1)-dimensional simplices replace line segments. Such
a contouring algorithm approximately inverts the redistancing scheme built on a distance
tree and is used in Steps 5 and 9 above.

2. VELOCITY EXTENSION

Moving interfaces via the advection equation

ϕt −W · ∇ϕ = 0 (8)

requires a globally defined velocityW which extends the given velocity functionalV
smoothly off the interface0(t). Early level set methods such as [10] built in problem-
dependent velocity extensions, such as the natural extensions available for passive transport,
geometric problems and interfacial transport in fluid flows. This reduces the usefulness of
the level set approach because each new moving interface problem requires a new velocity
extension programmed into the level set algorithm. Some recent velocity extensions tailored
to specific advection methods and interfacial representations are presented in [11].

We use a fast problem-independent velocity extension to move0(t)without any informa-
tion on theV −0 relationship. This permits the solution of a wide variety of moving interface
problems with minimal programming effort: given an implementation of our method, a new
moving interface problem requires only a new code for evaluatingV on0(t), rather than a
completely new moving interface code. Our velocity extension combines the nearest-point
extension of Section 2.1 and the distance tree [18] summarized in Section 1.3 into the
continuous and efficient “numerical Whitney extension” of Section 2.3.

2.1. Nearest-Point Extension

Given any continuous functiong on0, we can define its nearest-point extensionG by

G(x) = g(γ ), (9)

whereγ is a nearest point on0 to x, chosen arbitrarily if there are several points equidistant
from x. The nearest-point extensionG is continuous near smooth interfaces0, but may be
discontinuous at pointsx with several nearest neighbors. Figure 5 shows an example:G
is discontinuous along the “medial axis” [2] consisting of points equidistant from two or
more points of0. A weighted discrete version of this extension is used in [11].
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FIG. 5. (a) Discontinuities of the nearest-point extension occur along the medial axis of0, where nearest-
point values jump from 0 to 1. (b) The numerical Whitney extension maintains continuity by interpolating linearly
between the nearest-point values 0 and 1 in the triangle1⊂C in a 5-level distance tree.

The nearest-point extension can be efficiently evaluated at the vertices and centers of a
distance tree resolving0. When the tree is built, a pointer from each vertex and center to a
nearest element of0 is stored.G(x) can then be evaluated by finding a nearest pointγ on
a known nearest element and settingG(x)= g(γ ). At arbitrary pointsx ∈Rd, however, a
distance tree does not guarantee efficient evaluation of the nearest-point extension. Points
x located in large cells far from0 may require searching long lists withO(N) elements.
The distance tree speeds upG(x) evaluation only forx near0, because such points are
contained in small cells with few nearby elements where the search strategy of Section 1.3
is efficient.

2.2. Whitney Extension

The velocity extension technique used in our moving interface method resembles the
classical Whitney extension procedure of [23]:

• Build an infinitedistance tree covering all ofRd with L =∞.
• Evaluate the nearest-point extensionG(x) at a random pointx in each childless cell.
• Piece these values together into a continuous function with a partition of unity subor-

dinate to the distance tree.

The Whitney procedure produces a continuous extension ofg off 0, can be modified
to produce aCk extension, and is widely used in harmonic analysis [16]. The Whitney
extension, unlike the nearest-point extension, is continuous at everyx ∈Rd, because the
cell containingx is never subdivided once its distance from0 exceeds its size. Thus
the Whitney extension is eventually equal to a fixed continuous function on each cell as
L→∞.

2.3. Numerical Whitney Extension

Our velocity extension technique differs from the Whitney procedure, by using afinite
distance tree withL <∞, efficiently evaluating the nearest-point extensionG(x) at distance
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FIG. 6. Distance treeD, interfacial unit normal velocityx-componentVx and Whitney extensionWx over
distance tree and triangulationT with L = 4 and 5 levels.

tree vertices and centers, and replacing Whitney’s partition of unity by continuous piecewise-
linear interpolation from the triangulated tree vertices and centers. The procedure evaluates
W(x) via the following steps, shown in Figure 5(b):

• Find the distance tree cellC containingx by binary search.
• Find the triangle1⊂C containingx.
• Interpolate the nearest-point extension ofg linearly from vertices of1 to get the

numerical Whitney extensionW(x).

Unit normal velocityV = N on a circular interface0, and its extensionW onR2 are shown
in Fig. 6. Timings for building the distance tree and evaluating the nearest-point extension
at all cell vertices and centers are given in Table I and exhibit the expectedO(N log N)
cost.

The numerical Whitney extension produces a continuous function but not an exact ex-
tension ofg off 0, unless level-L childless cells meet0 at vertices and centers andg is
piecewise linear on0. This inexactness can be remedied by subdividing0 elements and
tree cells at every intersection point and adding such points to the triangulation.

Wheng is the velocityV of 0, the numerical stability of moving interface methods is
improved by themaximum principlewhich holds for the numerical Whitney extension: the

TABLE I

Number L of Tree Levels and NumberNc of Tree Cells, versus CPU SecondsTd for Building

the Distance TreeD, Tt for Triangulating the Tree Vertices and Centers,Te for Evaluating the

Nearest-Point Extension onD, and Ts for One Step of Semi-Lagrangian Time Stepping

L 4 5 6 7 8 9 10 11 12

Nc 269 653 1421 2957 6029 12173 24461 49037 98189
Td 0.01 0.02 0.04 0.11 0.24 0.57 1.24 2.81 6.35
Tt 0.01 0.01 0.02 0.05 0.11 0.24 0.51 1.11 2.32
Te 0 0 0 0.01 0.01 0.02 0.03 0.07 0.14
Ts 0.02 0.04 0.09 0.2 0.43 0.95 2.04 4.3 9.5
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maximum overRd of W cannot exceed the maximum over0 of V . The maximum principle
guarantees that regions of space far from0 cannot move faster than the interesting nearby
regions.

3. LOCAL GEOMETRIC VELOCITIES

Computations with our method require a user-supplied module which evaluates the in-
terfacial velocity for a given moving interface problem. In this section, we describe such a
module for evaluating velocity functionalsV =V(x, t, N,C) depending on the local posi-
tion and geometry of the interface. These velocities provide important computational tests
for the accuracy, efficiency, and modularity of our method and pose numerical difficulties of
their own. The computation of a smooth and accurate normal and curvature for a complex
polygonal interface0 with facets and corners is difficult because the standard formulas for
curvature are complicated and their numerical approximation is sensitive. Thus we use an
indirect technique based on the signed distance functionϕ and the geometric formulas

N = ∇ϕ
‖∇ϕ‖ , C = −∇ · N. (10)

A uniform mesh gives convenient robust approximations of these formulas, but requires
excessive CPU time and memory. Thus we evaluateN andC on0 efficiently and accurately
by a module which

• builds a local equidistant mesh efficiently near0,
• evaluatesϕ on the local mesh,
• differentiatesϕ andN accurately on the local mesh, and
• interpolatesN andC back to the vertices of0.

3.1. Local Equidistant Meshing

First, we build a local equidistant mesh near0. The simplest technique, marking nearby
points of a global mesh, is prohibitively expensive for fine meshes. A more efficient tech-
nique employs sorting as follows.

A two-dimensional local mesh with mesh sizeh can be viewed as a collection of disjoint
x-intervals(i L : i R, j )={(ih, jh) | i L ≤ i ≤ i R}, or as a similar collection ofy-intervals.
Figure 7 shows a local mesh and these two viewpoints.

FIG. 7. Local grid for a simple interface (a), viewed asx-intervals in (b) andy-intervals in (c).
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We build the local mesh by listing every mesh point withinhorizontaldistanceRhof any
interface pointγ ∈0, then listing each mesh point withinverticaldistanceRhof some point
listed in the horizontal pass. The resulting mesh includes every point necessary to form a
two-dimensional difference stencil of half-widthR for differentiating or interpolating to
any interface pointγ ∈0.

An efficient construction algorithm is ensured by sorting and pruning local mesh points
listed more than once. Red–black trees or hashing could also be used to prevent duplica-
tion [6].

We store the local equidistant mesh in a data structure which contains

• The mesh points(ih, jh),
• a list of x-intervals(i L : i R, j ), sorted into groups with the samey-index j ,
• a list of y-intervals(i, jL : jR), sorted into groups with the samex-index i ,
• pointers tox-intervals with giveny-index, and
• pointers toy-intervals with givenx-index.

The three-dimensional case is similar with az-index added.

3.2. The Local Distance Function

We evaluate the local distance functionϕ on the local mesh by injection and interpolation.
The local mesh near0 has mesh size half the size of the level-L cells of the distance tree
D, so most local mesh points lie at vertices or centers of the distance tree. At other local
mesh pointsx, we interpolateϕ from the triangle containingx.

It is possible to evaluateϕ exactly and efficiently as the local mesh is built, by marking each
local mesh point with the distance and location of the interface pointγ ∈0 responsible for
its creation. However, we expect minimal improvement in accuracy from such an algorithm
because injection is already exact near0.

3.3. Differentiation

Givenϕ on a local equidistant mesh, we use standard formulas such as

ϕ′(x)≈ 1

2h
(ϕ(x + h)− ϕ(x − h)) (11)

to approximateN andC from Eq. (10). Such formulas are based on polynomial interpolation
and produce inaccurate oscillatory results if their stencils include points whereϕ is not
smooth. The signed distance function is not smooth when0 has corners, since∇ϕ andC
are undefined there.

Thus we computeN andC by essentially nonoscillatory (ENO) differentiation [4]: use
standard equidistant formulas, but slide the stencil in the direction that reduces oscillations.
For example, we can approximateϕ′(x) to second order by Eq. (11), or by uncentered
formulas

3ϕ(x)− 4ϕ(x − h)+ ϕ(x − 2h)

2h
or
−ϕ(x + 2h)+ 4ϕ(x + h)− 3ϕ(x)

2h
. (12)

Normally the centered formula in Eq. (11) would give better accuracy, but ifx is adjacent
to a discontinuity located nearx+ h/2 we would prefer the left-shifted stencil in Eq. (12).
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As an automatic algorithm, we choose the stencil to minimize the sum of absolute values
of theseconddifferenceϕ(x+ h)− 2ϕ(x)+ϕ(x− h) over the stencil points, because we
expectϕ to be Lipschitz continuous with jumps inϕ′. Large values ofϕ′′ or the second
difference will therefore signal corners inϕ, which the stencil should not cross.

One-dimensional ENO differentiation on the local mesh suffices to evaluate the multidi-
mensional derivatives inN andC. We differentiate inx by using thex-interval representation
of the local mesh, and vice versa iny.

Accuracy of numerical derivatives is further improved by cosine smoothing: in thex di-
rection, for example, replaceϕ(x) by

Sxϕ(x) = 1

4
(ϕ(x + h)+ 2ϕ(x)+ ϕ(x − h)), (13)

and similarly in they direction. Such operations commute, so we applySx on eachx
interval (with simple averaging at the endpoints), then applySy on eachy interval. This
constitutes one pass of cosine smoothing, and improves the accuracy of ENO differentiation
noticeably. Previous work on semi-Lagrangian moving interface methods [19, 20] shows that
smoothing is essential when the normal velocityV depends strongly on curvature. While
the convergence theory of these methods is not yet complete, it appears that smoothing
satisfies a CFL accuracy condition and produces convergence.

3.4. Interpolation

We complete the evaluation ofV on a polygonal interface0 by interpolatingN andC
back to the vertices of0. SinceN andC are known on a local equidistant mesh near0,
many accurate interpolation schemes are available. We use ENO interpolation on a stencil
chosen to minimize the sum of absolute values offirst differences over the stnecil, because
these quantities may have jumps.

4. COMPUTATIONAL VALIDATION

In this section, we demonstrate the accuracy and efficiency of our method by computing
solutions to a wide variety of moving interface problems. We describe the implementation of
our method in Section 4.1 and the common parameters of our computational experiments in
Section 4.2. Our method is tested on complicated smooth and nonsmooth interfaces under
rigid and shearing passive rotation velocities in Section 4.3 and on smooth and faceted
interfaces moving under geometric velocities including anisotropy, topological complexity,
curvature, and nonconvexity in Section 4.4. Motion under a simple nonlocal geometric
velocity functional is computed in Section 4.5.

4.1. Algorithm

Our method was implemented in Standard C, following the outline below, compiled with
the Sun C compiler and the-fast optimization flag, and run on one 450 MHz CPU of a
Sun Ultra 60 under Solaris 2.7. The code was not extensively tuned for speed so timings
reported are far from optimal. The numbered steps correspond to Steps 1–9 in Section 1.2.
We begin with0=0(t).
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1. [D, ϕ]= DistanceTree(L , 0) [Build anL-level distance tree around0 and evaluate
the signed distanceϕ from 0 at tree cell vertices.]

2. V = Velocity(t, 0; D, ϕ) [Call a user-supplied module to evaluate the velocity on
the interface.]
T = Triangulation(D)

3. W= WhitneyExtension(V, D, T) [Build the Whitney extension ofV .]
4. [D̃, ψ̃ ]= ContourTree (k, t, ϕ(x+ kW(x, t), t)) [Build a contour treeD̃ resolving

the zero set of the predicted CIR solutionψ̃ defined in Eq. (5).]
T̃ = Triangulation (D̃)

5. 0̃= ZeroSet (ψ̃, T̃) [Find the zero set of̃ψ on the triangulatioñT .]
6. Ṽ = Velocity(t + k,0̃; D̃, ψ̃)
7. W̃= WhitneyExtension (Ṽ, D̃, T̃)
8. [D, ψ ]= ContourTree(k, t, ϕ(x+ k

2W(x̃, t)+ k
2W̃(x, t), t))

T = Triangulation(D)
9. 0(t + k)= ZeroSet (ψ, T)

Each cell splitting in Step 4 requires new values ofψ̃(x)=ψ(x̃, t) constructed by the
following sequence of operations:

4.1. Find the distance tree cellC and subtriangle1 of C containingx.
4.2. Interpolate the nearest-point extension ofV from vertices of1 to get the numerical

Whitney extensionW(x, t).
4.3. Projectx backward to the predicted characteristic pointx̃= x+ kW(x, t).
4.4. Find the childless distance tree cellC̃ containingx̃.
4.5. Optionally iterate locally to find the velocity and the projected pointx̃.
4.6. Search interface elements intersecting the concentric triples ofC̃, its parent and

grandparent as necessary to find closest pointγ ∈0(t) to s.
4.7. Setψ̃(x)=ϕ(x̃, t), the exact signed distance from̃x to 0(t).

Step 8 is similar with̃x replaced byx+ k
2W(x̃, t)+ k

2W̃(x, t).

4.2. Parameters and Tests

Our experiments vary the initial interface0(0), the velocity functionalV , the spacetime
domain [0,a]× [−b, b]2 and the following computational parameters:

L: The number of tree levels in the distance tree and theψ quadtree.L ranges between
4 and 10, giving spatial resolution equivalent to a uniform mesh with 162 to 10242

points at much lower cost.
N: The number of time steps from the initial time 0 to the final timea. The time step

k is given byk=a/N. N ranges from 10 up to 2560, whilek=O(h)=O(2−Lb)
balances spatial and temporal resolution.

S: The number of cosine smoothing passes betweenϕ and∇ϕ, and betweenN andC.
We tookS= 0 except for strongly curvature-dependent velocities, whereS=O(L).

E: The order of ENO differentiation in local geometric velocities. There is rarely any
observable difference betweenE= 2 andE= 3, soE is not reported.

Convergence. We refer to a computation with given values forL , N, andSas aL/N/S
run for brevity, or as anL/N run if S= 0. We carry out several convergence studies com-
paring eachL/N run to the next(L + 1)/2N run, typically superimposing time-exposure
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FIG. 8. Testing for grid effects: mesh and solution at 0◦ and 10◦.

plots of the moving interface to demonstrate convergence to graphical accuracy. Interfacial
errors

δ = max
x∈0̃(t)

|ϕ(x, t)|, (14)

whereϕ is the exact signed distance function and0̃(t) is the computed interface, are reported
for arbitrary interfaces under passive transport and for circles shrinking under curvature.

Grid effects. Many moving interface methods suffer from grid effects which cause
anisotropic computational results to depend sensitively on the orientation of the underlying
computational grid. Our method is designed to minimize grid effects and maximize isotropy
subject to the existence of an underlying square mesh. We often verify the absence of grid
effects by computing solutions twice: once with the mesh aligned with an axis of symmetry
of the problem and again at 10◦ to the symmetry axis. The second run is then plotted at
−10◦ and the two runs superimposed to demonstrate the absence of grid effects. Figure 8
shows this process for a threefold anisotropic computation. The small angle 10◦ typically
reveals grid effects well, by distorting propagation directions and speeds for sharp corners
propagating under anisotropic velocities.

4.3. Passive Transport

We begin validating our method by computing circles and triangles undergoing passive
transport by shear velocities

F(x, y) = 1−max(0, 1− x2− y2)4

8(x2+ y2)
(−y, x) (15)

and rigid body rotationF(x, y)= (−y, x). The shearing velocity (15) rotates particles
around the origin at widely varying speeds, and is often used to test vortex methods for
the 2-D Euler equations [17], while rigid body rotation is often used to measure dissipative
errors in advection methods [7].

We carried out four computations with smooth and nonsmooth interfaces under these
flows:

• (a) eight circles of radii between 0.4 and 1.2 distributed randomly in the domain
[−5, 5]2 under shear rotation,
• (b) a single triangle of radius 1/2 at the origin (0, 0) in the domain [−2, 2]2 under

shear rotation,
• (c) a circle of radius 1/2 located at (2, 2) in the domain [−4, 4]2 under rigid rotation,

and
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FIG. 9. Shearing and rotating circles and triangles under passive transport.

• (d) a triangle of radius 1/2 located at (2, 2) in the domain [−4, 4]2 under rigid rotation.

The shearing interfaces (a) and (b) in 9/320 runs resolved to graphical accuracy, plus
graphical convergence studies of (c) and (d) after two periods(t = 4π), are shown in
Fig. 9.

Next, we measure the order of accuracy. Passive transport velocities are naturally defined
everywhere, but we evaluate them only at the vertices of0(t): second-order time stepping
plus theO(h2) error in linear interpolation between vertices at each ofO(1/k) steps yields a
global error of the formO(k2)+O(h2/k). The maximum errors in the computed interface
at t = 20 for shearing andt = 4π for rotation are tabulated and plotted in Table II. The
observed order of accuracy varies smoothly between 1 for large time steps or the smooth
well-resolved interface (c) and 1/2 for small time steps or the underresolved interfaces (a),
(b), and (d). The expectedO(N log N) cost per step is verified by the scaled CPU seconds
T/N L reported in Table II.
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TABLE II

Maximum Interfacial Errors δ and CPU SecondsT versus LevelsL and Time StepsN

for Passive Shearing and Rigid Rotation

(a) Shearing circles att = 20 on [−5, 5]2

L\N 10 20 40 80 160 320 640 1280 2560 T/N L
6 0.220 .177 .246 .338 .362 — — — — 0.135
7 — .081 .108 .147 .225 .285 — — — 0.309
8 — — .032 .052 .082 .119 .165 — — 0.645
9 — — — .017 .029 .050 .072 .094 — 1.311

10 — — — — .009 .017 .030 .044 .058 2.625

(b) Shearing triangle att = 20 on [−2, 2]2

L\N 10 20 40 80 160 320 640 1280 2560 T/N L
6 0.247 .147 .151 .147 .185 — — — — 0.050
7 — .077 .084 .088 .098 .133 — — — 0.117
8 — — .043 .045 .051 .065 .086 — — 0.283
9 — — — .020 .024 .033 .048 .065 — 0.651

10 — — — — .012 .016 .023 .033 .048 1.361

(c) Rotating unit circle att = 4π on [−4, 4]2

L\N 10 20 40 80 160 320 640 1280 2560 T/N L
6 1.060 .806 .254 .168 .347 — — — — 0.016
7 — .803 .210 .071 .069 .135 — — — 0.031
8 — — .198 .048 .024 .031 .064 — — 0.064
9 — — — .043 .013 .009 .015 .032 — 0.128

10 — — — — .011 .004 .004 .008 .016 0.254

(d) Rotating unit triangle att = 4π on [−4, 4]2

L\N 10 20 40 80 160 320 640 1280 2560 T/N L
6 1.130 .970 .249 .222 .291 — — — — 0.021
7 — .996 .223 .118 .137 .200 — — — 0.043
8 — — .242 .078 .072 .096 .141 — — 0.093
9 — — — .062 .038 .050 .068 .100 — 0.190

10 — — — —- .024 .025 .034 .047 .069 0.388
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FIG. 10. Right and wrong corner motion with unit normal velocity.

4.4. Local Geometric Velocities

We validate our method by computing accurate converged interfaces moving under a
variety of local geometric velocities, including

• correct viscosity solutions for corners and complex shapes growing and merging with
unit normal velocity,
• regularly faceted shapes growing and shrinking under anisotropic normal velocities,
• irregularly faceted “Wulff shapes” [21] with random angles,
• complex multiply connected faceted growth patterns, and
• simple and complex shapes shrinking under mean curvature and nonlocal volume-

preserving mean curvature flows.

4.4.1. Viscosity solutions with corners.Correct computation of “viscosity solutions”
for faceted interfaces in geometric problems depends on moving a corner in or out with unit
normal velocity. Inward motion should keep corners sharp, while outward motion should
produce rounded corners due to Huygens’ principle. Even starting from asmoothclosed
curve0, inward motion along the normal with unit speed will develop a corner in time at
most 1/max0 C. Straightforward moving interface methods can easily produce the incorrect
viscosity solutions shown in Fig. 10.

Our method computes the correct viscosity solution for a triangle growing and shrink-
ing with unit normal velocity. We superimpose 5/20 over 6/40 runs in Fig. 11, to show

FIG. 11. Triangles growing and shrinking with unit normal velocity: convergence of viscosity solutions and
absence of grid effects.
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FIG. 12. Clovers merging with unit normal velocity for 0≤ t ≤ 2.5 on [−3, 3]2.

convergence to graphical accuracy, and 0◦ over 10◦ runs at resolution 7/80, to show absence
of grid effects.

Complex interfaces grow and merge correctly in Fig. 12. The manifold corners and
changes of topology are computed automatically and easily. In particular, outward-moving
inward-pointing corners remain correctly sharp, as the viscosity solution theory requires.
The final area enclosed by the computed interface is 35.67937, 35.72377, 35.74304, and
35.75297, respectively, and shows smooth monotone first-order convergence.

4.4.2. Anisotropic normal velocity and the Wulff limit.Anisotropic motion along the
normal vector connects moving interfaces to Hamilton–Jacobi equations

ϕt + H(∇ϕ) = 0, (16)

which encounter difficulties when the HamiltonianH is nonconvex. For anisotropic normal
velocities

V = R+ ε cos(kθ), (17)

the HamiltonianH is nonconvex—and some Hamilton–Jacobi methods break down—if

R+ ε(1− k2) < 0< R− |ε|. (18)

We evolve an initially unit-circular interface under anisotropic normal velocities (17) pro-
ducing nonconvex Hamiltonians, withR= 1 andR+ ε(1− k2)= −4. Figure 13 compares
7/128 and 8/256 runs for 0≤ t ≤ 8 on [−9, 9]2 and tree meshes tilted at 0◦, 10◦, and 180◦/k
for k= 3, 4, 5, and 6. Grid effects are almost invisible and the interface grows rapidly
into the regularly faceted Wulff shape with the correct anisotropy. Figure 14 shows similar
results for shrinking.

We also test our method on random polygonal Wulff shapes with nonuniform corner
angles. These shapes arise from velocities of the form

V = R(1+ ε sinσ(θ)), (19)

whereσ is the piecewise-smooth function

σ(θ) = π θ − θ j

θ j+1− θ j
for θ j ≤ θ ≤ θ j+1 (20)

and −π = θ0<θ1< · · · <θn=π are given angles. Motion by Eq. (19) withRε >0
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FIG. 13. Circles growing into asymptotic Wulff shapes.

produces facets perpendicular to the anglesθ j , with acute corners rounded. Figure 15
shows polar plots of these velocities withR= 3/4 andε= 1/2, the corresponding Wulff
shapes, and interfaces moving under Eq. (19) for 0≤ t ≤ 10 on [−12, 12]2, and demonstrates
excellent agreement between computation and theory [21].

FIG. 14. Radius 3.5 circles shrinking into the asymptotic Wulff shapes: 6/40 vs 7/80 runs for 0≤ t ≤ 2 on
[−4, 4]2.
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FIG. 15. Circles growing into irregular Wulff shapes: polar plots ofV(θ), 7/128 runs for growing interfaces,
and comparisons.

4.4.3. Merging under anisotropy.We validate the topological robustness of the numer-
ical method by starting from a collection of randomly placed and sized circles and moving
the interface along its normal with an anisotropic speedV = 2+ cos(5θ + 0.1). Figure 16
shows the mechanism which transforms this highly nonconvex initial interface into the
asymptotic pentagonal Wulff shape ast→∞. The 6-level tree meshes at times 0, 40, and
80 are shown, to emphasize the resolution obtained by building the quadtree root cell to
enclose the current interface. When an initially small interface grows larger by an order of
magnitude, the resolution improves by an order of magnitude as well. Thus, the 8/320 run

FIG. 16. Bubbles merging into the asymptotic Wulff shape.
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FIG. 17. Circles shrinking withV =C for 0≤ t ≤ 2 in [−4, 4]2.

shown—which required 21 min CPU time—would have required 1.5 days of CPU time
with a fixed domain sized to fit the final interface.

4.4.4. Circles shrinking under curvature.A classic geometric problem shrinks a plane
curve with velocity equal to its curvature, and forms a useful test case for curvature-
dependent velocity. A circle shrinking withV =C has exact radius

R(t) =
√

R(0)2− 2t,

so with R(0)=√5, a circle should shrink to radius 1 at timet = 2. A smaller circle with
R(0)= 1 vanishes completely in timet = 1/2. Figure 17 shows convergence to graphical
accuracy, computed with 20 through 640 time steps on quadtrees with 4 through 9 levels,
and plotted every 0.2 time units fromt = 0 tot = 2 on the domain [−4, 4]2. CPU seconds per
step and maximum errors in the large circle location atR= 1, t = 2 are reported and plotted
in Table III and display clear first-order convergence along diagonalsk=O(h). Along
vertical columns the error is dominated by theO(h2/k) term due to polygonal interface
approximation atO(1/k) steps.

4.4.5. Nonconvex interfaces under curvature.A geometric theorem [3] predicts that
any smooth embedded plane curve should collapse to a round point and vanish in finite time
under curvature flowV =C. We verify that our method behaves correctly for two complex
polygonal shapes, with the convergence studies shown in Figs. 18 and 19.

4.5. A Nonlocal Geometric Velocity

Many important moving interface problems arenonlocal—the normal velocity at each
pointγ depends on all of0(t) and even on its history{0(s) | 0≤ s≤ t}. In this section, we
test our method on the simplest nonlocal geometric velocity

F =
(

C −
∫
0(t) C ds∫
0(t) 1ds

)
N. (21)
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TABLE III

Maximum Error δ at R= 1, t = 2 and CPU SecondsT per Step versus NumberN of Time

Steps and NumberL of Tree Levels in Two Circles Shrinking under Curvature for 0≤ t≤ 2

on [−4, 4]2

(a) Minimal smoothing
L/S N= 10 20 40 80 160 320 640 1280 2560 T/N L
4/1 .143 .179 .290 .493 .991 — — — — .020
5/1 — .037 .069 .122 .248 .518 — — — .041
6/2 — — .021 .034 .063 .121 .239 — — .085
7/2 — — — .010 .017 .031 .059 .114 — .164
8/3 — — — — .005 .008 .015 .029 .056 .324

(b) Natural smoothing
L/S N= 10 20 40 80 160 320 640 1280 2560 T/N L
4/1 .143 .179 .290 .493 .991 — — — — .021
5/2 — .050 .080 .139 .250 .523 — — — .044
6/3 — — .025 .037 .067 .124 .244 — — .089
7/4 — — — .012 .018 .032 .060 .115 — .180
8/5 — — — — .005 .008 .015 .029 .057 .363

This velocity smooths the moving interface by curvature while preserving the area inside
the interface, so arbitrary shapes become round points but the interface does not vanish.
Small isolated pieces disappear and their area is transferred to large pieces.

We study a tilted square spiral unwinding under this velocity in Fig. 20, where 7/512/1
and 8/1024/2 runs converge to graphical accuracy. The 7/512/1 run took 18 min of CPU
time and conserved area to within 0.9% of its initial value. Each successive refinement
quadruples the CPU time and halves the area error, confirming the expectedO(N log N)
cost per time step and first-order accuracy. The interface is shown at geometrically increasing
timest = 0, 0.005, 0.01, 0.02, . . . ,2.56, because its motion slows dramatically as curvature
variation decreases toward its final steady state.

FIG. 18. Tilted polygon shrinking under curvature flow.



FIG. 19. Tilted square spiral unwinding under curvature flow.

FIG. 20. Spiral unwinding under volume-preserving flow by curvature.

534
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FIG. 21. Trefoils merging under volume-preserving flow by curvature.

Figure 21 superimposes 8/1024/2 and 9/2048/3 runs for a collection of trefoil-shaped
bubbles moving under Eq. (21). Convergence to graphical accuracy is evident. The 8/1024/2
computation took 31 min CPU time and conserved the initial area within 8% accuracy. The
9/2048/3 computation took 140 min CPU time and lost 4% of its area byt = 2.56.
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