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A fast modular numerical method for solving general moving interface problems
is presented. It simplifies code development by providing a black-box solver which
moves a given interface one step with given normal velocity. The method combines an
efficiently redistanced level set approach, a problem-independent velocity extension,
and a second-order semi-Lagrangian time stepping scheme which reduces numerical
error by exact evaluation of the signed distance function. Adaptive quadtree meshes
are used to concentrate computational effort on the interface, so the method moves
anN-element interface i® (N log N) work per time step. Efficiency is increased by
taking large time steps even for parabolic curvature flows. Numerical results show
that the method computes accurate viscosity solutions to a wide variety of diffi-
cult geometric moving interface problems involving merging, anisotropy, faceting,
nonlocality, and curvature. 2000 Academic Press

1. INTRODUCTION

We present an efficient accurate method for general moving interface problems. ¢
method functions as a black-box solver, interrogating the interfacial velocity only throu
a user-supplied module. It also

e merges and breaks complex topology automatically via a level set approach w
general velocity extension,
o takes large time steps via stable second-order semi-Lagrangian time stepping sche

and
e resolves anN-element interface with optimaD(N log N) work per time step by
adaptive quadtree meshing and efficient geometric algorithms.

1 Research supported by Air Force Office of Scientific Research Grant FDF49620-96-1-0201.
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The work extends the first-order semi-Lagrangian uniform mesh method for geome
moving interfaces of [19], the adaptive quadtree version of [20], and the quadtree-based
redistancing algorithm of [18]. The present work uses second-order accurate time step
which greatly reduces numerical dissipation (Section 1.2), fast adaptive quadtree mest
and a faster redistancing scheme which enhances the semi-Lagrangian approach by
interpolation (Section 1.3). The fast new quadtree-based velocity extension algorithn
Section 2 allows our method to couple with any user-supplied interfacial velocity, su
as the geometric velocity built in Section 3 and used in the computational experiment:
Section 4.

1.1. Overview

A moving interface is the boundafy(t) = 92 (t) of a set2(t) c RY depending on time
t. If Q is sufficiently smooth, thef'(t) has an outward unit norm&, a curvatureC and
a velocityV at each point. Amoving interface problers a closed system of equations
which specifiesv as a functional of", possibly in a highly indirect and nonlocal way.
Figure 1 shows some typical solutions of geometric moving interface problems, wh
V =V(x,t, N, C) depends only on the local position and geometry @f.

The main difficulty in moving interfaces is the correct handling of merging, breaking, a
other topological changes. This difficulty can be overcome by reformulating the probls
on a fixed domain, using the signed distance functiont9 defined by

p(X, 1) = :EVTFIQ) X =l (1)
If ¢ is taken positive irf2(t) thenN, C andV can be computed from by [22]
N=Vg/[Vel, C=-V-N, V=¢Vy/|Ve|? 2)

If the specified velocity functiona¥ on T is extended smoothly to a vector fidld(x, t)
onRY, then solving the advection equation

¢ —W-Vgp=0 3

moves the zero sdi(t) of the solutiong with velocity V and hence solves the moving
interface problem. Topological changes are handled automatically.

iy

N

FIG. 1. Sample moving interfaces computed with our method: (a) initially circular bubbles after passi
transport in a shearing flow =V (x), (b) faceted shapes merging and growing under a sixfold anisotropi
velocity V =V (N), and (c) a complex polygonal shape shrinking under curvature\fleanC.N.
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“Level set” methods [11] mové&'(t) via the advection equation (3). An initial signed
distance functiop(x, 0) and an extended velocity fiely are built,¢ is advected and con-
toured whernl'(t) is required. While these methods handle topology automatically, the
are some potential difficulties. They can be expensive since the dimension increases,
ticularly if uniform meshes are used. One must be careful to obtain the correct “viscos
solution” of the advection equation. Extending the velocityltff) can be difficult. Level
set methods are not naturallyodular. a new code must be written for each new problem
to be solved, since the velocity evaluation is intertwined with the moving interface code
velocity extension. Our method removes these barriers: we solve the advection equatio
an adaptive quadtree mesh to eliminate the cost of going up a dimension. Correct vis
ity solutions are obtained by semi-Lagrangian time stepping with exact evaluation of 1
signed distance function and frequent efficient redistancing. A general problem-indepent
velocity extension makes our method modular and easy to apply.

Our numerical method moves interfaces by the second-order semi-Lagrangian time s
ping scheme presented in Section 1.2 and three independent computational modules:

e redistancing to produce the signed distapdeom a given interfac& (Section 1.3),

e contouring to extract the zero détfrom the solutiony of Eq. (3) (Section 1.3), and

e extension of interfacial velocitieg defined or" to global smooth velocitied/ defined
everywhere oY (Section 2).

1.2. Semi-Lagrangian Time Stepping

The advection equation (3) can be solved by many time stepping schemes. We use s
Lagrangian schemes which offer some unique advantages: explicit unconditional stabi
natural adaptivity, and modularity. These schemes are widely used for modeling lin
advection in atmospheric science [13, 15], where unconditional stability eliminates 1
stringent time-step restriction encountered on small cells by Eulerian schemes [14]
have been applied to moving interfaces in [19, 20]. They rely on the observation that
advection equation propagates solution values along charactexistis@) satisfying

S(t) = —W(s(b), 1). 4

Thus the solutiony (x) = ¢(x, t + k) at timet + k can be evaluated by solving the charac-
teristic ODE (4) backward in time from = s(t + K) to s(t) and setting/ (X) = ¢(s(t), t).
Standard ODE theory [5] guarantees a unique solutigh for any x if W is globally
Lipschitz, so backward characteristics do not cross and the procedure is well defined [
Semi-Lagrangian methods adopt this two-step approach, solving the characteristic C
numerically fromx = s(t + k) to s(t) and then approximating the off-grid valgés(t), t)
by interpolation [9] or monotone advection [12] to preserve stability. Our moving interfa
method evaluates the signed distap¢s(t), t) exactly and omits the approximation.
Semi-Lagrangian moving interface methods which use the first-order Courant—Isaacs
Rees (CIR) scheme [1]

(X)) = (%, 1) = p(x + kW(x, 1), ) (5)

to solve the advection equation were developed in [19, 20]. Their effectiveness has
heuristically justified and experimentally verified for many moving interface problen
involving passive transport, geometry, dynamic topology, faceting, and curvature. T



SEMI-LAGRANGIAN METHOD FOR MOVING INTERFACES 515

convergence theory of these methods is straightforwaM # V (x, t, N), because the
advection equation is hyperbolic. For curvature floiv=C, the advection equation is
parabolic and the main barrier to convergence is the Courant—Friedrichs—Lewy (CFL) ¢
dition, which restricts the time step of most explicit method&byO (h?) to ensure infor-
mation propagates correctly and the computation remains stable. Semi-Lagrangian mo
interface methods are explicit yet unconditionally stable and can satisfy the CFL condit
by nonlocal velocity evaluation, permitting convergence with large time $tep®(h)
even for parabolic problems [19, 20].

The specific semi-Lagrangian time stepping scheme used in our method combines a
predictor (5) with a second-order trapezoidal corrector

v (X) =<p<X+;W(>?,t)+ ;W(x,t+k),t): (6)

the extended velocityV is evaluated fromj at timet + k. This predictor—corrector pair
is second-order accurate in time, explicit, and unconditionally stable. Each/nealue

is an exacty value so the maximum @f can never increase. The CIR predictor (5) usec
as a time-stepping scheme is also unconditionally stable, but only first-order accurate
extremely dissipative [7].

Both predictor and corrector may also incorporate local iteration, where the first
proximation x* = x +kW(x, t) (respectivelyx* =x + KW(X, t) + §W(x, t + k)) to the
foot of the characteristic throughis repeatedly replaced by+ kW(x*, t) (respectively,
X+ §W(x*, t)+ I%VV(X, t +k)). Local iteration does not alter the order of accuracy of the
time stepping scheme, but reduces numerical dissipation noticeably in some experime

Since our advection velocitW(x, t) extends the user-specified velocity functioival
defined on the zero sé&t(t) of p(x,t), each semi-Lagrangian time step requires sever:
complex global operations. Starting with an interfdeg), our method carries out the
following steps to produce the new interfdcé + k):

Lo

Evaluate the signed distangdrom the interfacd (t).

Evaluate the interfacial velocity of I'(t) by a user-supplied module.
ExtendV to a global advection velocitw.

Advancep via W to the predicted CIR solutiofr defined by Eq. (5).
Contoury to get the predicted interfade

Evaluate the predicted interfacial velociyof I".

ExtendV to a global advection velocity.

Advancep via W andW to the corrected solutiopr defined by Eq. (6).
Contouryr to getI' (t + k).

©oNoOOA~LN

Each of these steps can be efficiently implemented via the quadtree mesh which we
define.

1.3. Quadtree Meshes and Fast Algorithms

DEFINITION. A quadtree meskovering a cuber in RY is composed of square cells
organized intoL levels, with each cell on levél+ 1 contained in some levéleell, and
stores the following information:

o A cell listof cellsCj, grouped by levell, with the root cellCo = R on levell =0.
e A vertex listlocating cell vertices and centersRy.
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Each cellC in the cell list contains:

e lts levell and location(iy, . .., ig) in a uniformd-dimensional mesh with! Zells per
side.

e The indices in the vertex list of thé!2- 1 cell vertices and centers.

e Theindices in the cell list of its parent (if there is one), children (if any), and neighbo
(if any).

Given anL -level quadtree, many operations related to searching and sorting can be d
efficiently [2]. Finding the tree cell which contains a poigtfor example, require®(L)
checks of bits in the binary representatiorxofAn L-level quadtree can be built by recur-
sively splitting cells into 2 subcells, according to a splitting criterion which characterize:
the particular quadtree being built. Applications of quadtrees in Steps 1-9 include veloc
extension (Section 2) and:

The distance tree.An interfacel’ composed ofN piecewise linear elements can be
efficiently resolved on a tree mesh built by splitting any €ivhose edge length exceeds
its minimum distance

d(C,I") = minmin||x — y|| (7)
xeC yell

to I'. Such a tree resolvds at optimalO(N) cost, allows fasO(N log N) evaluation of
the signed distance function fbr, and is used in Step 1 of our method. The following fast
redistancing algorithm based on [18] evaluatés) at a new vertex of a levelt cell C in
2+ (1/(2log 2) logd] steps ind dimensions:

e Start: Set the current minimum distanogto I' equal tooc.

e Loop: Whilel >0 and the cub€(x, m) with centerx and half-side lengtim is not
completely contained in the concentric triple@freplaceC by its parentC*, find and
record a nearest elemelnf to x in the element list o€, replacem by the minimum
distancem” from x to I'j, and replacé by | — 1.

e Sign: Given a nearest elemeht to x, determine the sign af = +m* by checking
normal vectors of'} and its neighbors. Nearest elements forming an acute angle m
disagree on the sign g@f, so neighbors must be checked: see Fig. 2a.

This search strategy builds the distance tre®{iN log N) time and space complexity,
because the union of all triples of cells on any leivel L = O(log N) intersectsO(N)
elements. The search always terminates in a bounded number of steps (see Fig. 2b)
nearest element df which intersects the triplé * of the parenC* of a tree cellC may
not be the nearest elementlobverall; nor need it be the nearest elemerit afitersecting
the triple T** of the grandparent**. But in d <4 dimensions, any element intersecting
T* beats every element outside the trifl&* of the great-grandpare@***. In general
dimensiond, the numbei of levels ascended is determined by the diagonal length of
d-dimensional cube via the requiremedt24./d ora> 2+ (1/(2log 2) logd.

The contour tree. The unknown zero set of a given functigrcan be efficiently resolved
on a quadtree built by splitting each cell whose edge length exceeds the minimum ve
of || on the cell. Such quadtrees are built forand ¢ in Steps 4 and 8. This simple
approach to adaptive meshing takes advantage of the unique functional viewpoint inhe
in semi-Lagrangian methods, which define the soluilqi) at the new time step by the
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FIG. 2. (a) A pitfall in signingg(x): two nearest elements forming an acute angle may disagree about
sign of p(x). (b) The search strategy always terminates in at most three stelps dndimensions: any element
intersectingT * rules out all elements outside™**.

formula (6), which can be evaluated at any desired point. Most adaptive methods use |
derivative estimates and must recompute the solution when a trial mesh is refined [8].

Triangulation. For quadtrees in which adjacent cells differ in size by no more than
factor of 2—such as the distance tree—cell vertices and centers can easily be triangu
into conforming meshes [2]. Each cell in such a tree has 0 to 4 smaller neighlzbes2an
dimensions, so a triangulation can be built from the six possible configurations showr
Fig. 4. The distance tree for a simple interfdteés triangulated in Fig. 3.

Contouring. Given function valuegy(x) at the vertices and centers of a triangulatec
guadtree mesh, extracting the zero set of the continuous piecewise-linear interpolant o

FIG. 3. (a) Six-level distance tree mesh for a simple interface and (b) triangulation of its cell vertices a
centers.
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FIG. 4. Possible triangulations of a two-dimensional tree cell.

triangulation is straightforward. Id = 2 dimensions, for example, each triangle where
changes sign contains a unigque line segment where the linear interpokantanishes.
These line segments form a polygonal curve since the triangulation is conforming and
interpolant is continuous. Following the polygonal zero curve as far as possible in b
directions produces an oriented component @f+ k) with ¥ > 0 on its interior. Ind > 2
dimensions the contouring process is similar but slightly more complicdtdiinensional
simplices replace triangles ad — 1)-dimensional simplices replace line segments. Sucl
a contouring algorithm approximately inverts the redistancing scheme built on a distal
tree and is used in Steps 5 and 9 above.

2. VELOCITY EXTENSION
Moving interfaces via the advection equation
ot —W-Vp =0 (8)

requires a globally defined velocity¢ which extends the given velocity function#l
smoothly off the interfacd’(t). Early level set methods such as [10] built in problem-
dependent velocity extensions, such as the natural extensions available for passive tran:
geometric problems and interfacial transport in fluid flows. This reduces the usefulnes:
the level set approach because each new moving interface problem requires a new vel
extension programmed into the level set algorithm. Some recent velocity extensions tailc
to specific advection methods and interfacial representations are presented in [11].

We use afast problem-independent velocity extension to migyevithout any informa-
tionontheV — T relationship. This permits the solution of awide variety of moving interfact
problems with minimal programming effort: given an implementation of our method, a ne
moving interface problem requires only a new code for evaludtimo I'(t), rather than a
completely new moving interface code. Our velocity extension combines the nearest-pi
extension of Section 2.1 and the distance tree [18] summarized in Section 1.3 into
continuous and efficient “numerical Whitney extension” of Section 2.3.

2.1. Nearest-Point Extension

Given any continuous functioponT", we can define its nearest-point extensi@by
G(x) =9(y), )

wherey is a nearest point ofi to X, chosen arbitrarily if there are several points equidistan
from x. The nearest-point extensi@is continuous near smooth interfadesbut may be
discontinuous at points with several nearest neighbors. Figure 5 shows an exar@ple:
is discontinuous along the “medial axis” [2] consisting of points equidistant from two ¢
more points of". A weighted discrete version of this extension is used in [11].
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FIG. 5. (a) Discontinuities of the nearest-point extension occur along the medial aKisvafiere nearest-
point values jump from 0 to 1. (b) The numerical Whitney extension maintains continuity by interpolating linea
between the nearest-point values 0 and 1 in the triaagteC in a 5-level distance tree.

The nearest-point extension can be efficiently evaluated at the vertices and centers
distance tree resolvinh. When the tree is built, a pointer from each vertex and center to
nearest element df is stored.G(x) can then be evaluated by finding a nearest ppioh
a known nearest element and settlB(x) = g(y). At arbitrary pointsx € RY, however, a
distance tree does not guarantee efficient evaluation of the nearest-point extension. P
x located in large cells far frorfi may require searching long lists witB(N) elements.
The distance tree speeds Ggx) evaluation only forx nearI", because such points are
contained in small cells with few nearby elements where the search strategy of Sectior
is efficient.

2.2. Whitney Extension

The velocity extension technique used in our moving interface method resembles
classical Whitney extension procedure of [23]:

e Build aninfinite distance tree covering all & with L = co.

e Evaluate the nearest-point extens{®x) at a random point in each childless cell.

e Piece these values together into a continuous function with a partition of unity sub
dinate to the distance tree.

The Whitney procedure produces a continuous extensianaif I, can be modified
to produce aC extension, and is widely used in harmonic analysis [16]. The Whitne
extension, unlike the nearest-point extension, is continuous at &R, because the
cell containingx is never subdivided once its distance frdmexceeds its size. Thus
the Whitney extension is eventually equal to a fixed continuous function on each cell
L — oo.

2.3. Numerical Whitney Extension

Our velocity extension technique differs from the Whitney procedure, by usfimite
distance tree with < oo, efficiently evaluating the nearest-point extensix) at distance
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FIG. 6. Distance treeD, interfacial unit normal velocitx-componentV, and Whitney extensiolV, over
distance tree and triangulatidhwith L =4 and 5 levels.

tree vertices and centers, and replacing Whitney’s partition of unity by continuous piecewi
linear interpolation from the triangulated tree vertices and centers. The procedure evalu
W(x) via the following steps, shown in Figure 5(b):

e Find the distance tree cdll containingx by binary search.

e Find the triangleA c C containingx.

e Interpolate the nearest-point extensiongofinearly from vertices ofA to get the
numerical Whitney extensiow (x).

Unit normal velocityvV = N onacircular interfacg, and its extensioW/ onR? are shown
in Fig. 6. Timings for building the distance tree and evaluating the nearest-point extens
at all cell vertices and centers are given in Table | and exhibit the expé&xtdidog N)
cost.

The numerical Whitney extension produces a continuous function but not an exact
tension ofg off I, unless levek childless cells meel at vertices and centers agds
piecewise linear oi". This inexactness can be remedied by subdividinglements and
tree cells at every intersection point and adding such points to the triangulation.

Wheng is the velocityV of I', the numerical stability of moving interface methods is
improved by themaximum principlevhich holds for the numerical Whitney extension: the

TABLE |
Number L of Tree Levels and NumberN, of Tree Cells, versus CPU Secondg, for Building
the Distance TreeD, T, for Triangulating the Tree Vertices and Centers, T, for Evaluating the
Nearest-Point Extension orD, and T, for One Step of Semi-Lagrangian Time Stepping

L 4 5 6 7 8 9 10 11 12

Ne¢ 269 653 1421 2957 6029 12173 24461 49037 98189
Ty 0.01 0.02 0.04 0.11 0.24 0.57 1.24 2.81 6.35
T 0.01 0.01 0.02 0.05 0.11 0.24 0.51 111 2.32
Te 0 0 0 0.01 0.01 0.02 0.03 0.07 0.14

Ts 0.02 0.04 0.09 0.2 0.43 0.95 2.04 4.3 9.5
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maximum oveRY of W cannot exceed the maximum oveof V. The maximum principle
guarantees that regions of space far fidroannot move faster than the interesting nearb
regions.

3. LOCAL GEOMETRIC VELOCITIES

Computations with our method require a user-supplied module which evaluates the
terfacial velocity for a given moving interface problem. In this section, we describe sucl
module for evaluating velocity functional6=V (x, t, N, C) depending on the local posi-
tion and geometry of the interface. These velocities provide important computational te
for the accuracy, efficiency, and modularity of our method and pose numerical difficulties
their own. The computation of a smooth and accurate normal and curvature for a com,
polygonal interfacd™ with facets and corners is difficult because the standard formulas f
curvature are complicated and their numerical approximation is sensitive. Thus we us
indirect technique based on the signed distance fungtiand the geometric formulas

Vo

- . C=-V-N. (10)
Vel

A uniform mesh gives convenient robust approximations of these formulas, but requi
excessive CPU time and memory. Thus we evaltbsadC onT efficiently and accurately
by a module which

e builds a local equidistant mesh efficiently né&ar

e evaluates on the local mesh,

o differentiatesp andN accurately on the local mesh, and
e interpolatesN andC back to the vertices df.

3.1. Local Equidistant Meshing

First, we build a local equidistant mesh n&arThe simplest technique, marking nearby
points of a global mesh, is prohibitively expensive for fine meshes. A more efficient tec
nique employs sorting as follows.

A two-dimensional local mesh with mesh sizean be viewed as a collection of disjoint
x-intervals (i, :ig, j) ={(h, jh)|i_L <i <iRr}, or as a similar collection of-intervals.

Figure 7 shows a local mesh and these two viewpoints.
[
ﬂ&%w |
IH

FIG. 7. Local grid for a simple interface (a), viewed msntervals in (b) and/-intervals in (c).
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We build the local mesh by listing every mesh point withorizontaldistanceRhof any
interface poiny € I, then listing each mesh point withirertical distanceRhof some point
listed in the horizontal pass. The resulting mesh includes every point necessary to for
two-dimensional difference stencil of half-wid for differentiating or interpolating to
any interface poiny € I.

An efficient construction algorithm is ensured by sorting and pruning local mesh poit
listed more than once. Red-black trees or hashing could also be used to prevent dur
tion [6].

We store the local equidistant mesh in a data structure which contains

The mesh pointgih, jh),

a list of x-intervals(i, : ig, j), sorted into groups with the sargendex j,
a list of y-intervals(i, j._ : jr), sorted into groups with the samendexi,
pointers tox-intervals with giveny-index, and

pointers toy-intervals with givenx-index.

The three-dimensional case is similar witk-andex added.

3.2. The Local Distance Function

We evaluate the local distance functipon the local mesh by injection and interpolation.
The local mesh nedr has mesh size half the size of the leketells of the distance tree
D, so most local mesh points lie at vertices or centers of the distance tree. At other Ic
mesh pointx, we interpolatey from the triangle containing.

Itis possible to evaluateexactly and efficiently as the local mesh is built, by marking eacl
local mesh point with the distance and location of the interface pof responsible for
its creation. However, we expect minimal improvement in accuracy from such an algorit|
because injection is already exact nEar

3.3. Differentiation

Giveng on a local equidistant mesh, we use standard formulas such as

1
¢'(x)~ op P+ 0) —p(x — ) (11)

to approximatéN andC from Eq. (10). Such formulas are based on polynomial interpolatio
and produce inaccurate oscillatory results if their stencils include points wherenot
smooth. The signed distance function is not smooth wihéas corners, sincéy andC
are undefined there.

Thus we computd andC by essentially nonoscillatory (ENO) differentiation [4]: use
standard equidistant formulas, but slide the stencil in the direction that reduces oscillatic
For example, we can approximaé&(x) to second order by Eq. (11), or by uncentered
formulas

3p() —4pX — ) +ox -2 = —e(X+2N) +4p(x +h) — 3p(X)
2h 2h '

(12)

Normally the centered formula in Eq. (11) would give better accuracy, butsifadjacent
to a discontinuity located near+ h/2 we would prefer the left-shifted stencil in Eq. (12).
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As an automatic algorithm, we choose the stencil to minimize the sum of absolute val
of the secondlifferencep(x + h) — 2¢p(x) + ¢(x — h) over the stencil points, because we
expecty to be Lipschitz continuous with jumps . Large values ofy” or the second
difference will therefore signal corners ¢n which the stencil should not cross.

One-dimensional ENO differentiation on the local mesh suffices to evaluate the multi
mensional derivatives iN andC. We differentiate irx by using thex-interval representation
of the local mesh, and vice versayn

Accuracy of numerical derivatives is further improved by cosine smoothing: ir the
rection, for example, replage(x) by

1
Sip(X) = Z(</>(X +h) + 2¢0(x) + ¢(x — h)), (13)

and similarly in they direction. Such operations commute, so we apflyon eachx
interval (with simple averaging at the endpoints), then affjlpn eachy interval. This
constitutes one pass of cosine smoothing, and improves the accuracy of ENO differentic
noticeably. Previous work on semi-Lagrangian moving interface methods [19, 20] shows!1
smoothing is essential when the normal velogitglepends strongly on curvature. While
the convergence theory of these methods is not yet complete, it appears that smoof
satisfies a CFL accuracy condition and produces convergence.

3.4. Interpolation

We complete the evaluation &f on a polygonal interfac€ by interpolatingN andC
back to the vertices df. SinceN andC are known on a local equidistant mesh nEar
many accurate interpolation schemes are available. We use ENO interpolation on a st
chosen to minimize the sum of absolute value$irst differences over the stnecil, because
these quantities may have jumps.

4. COMPUTATIONAL VALIDATION

In this section, we demonstrate the accuracy and efficiency of our method by compu
solutions to a wide variety of moving interface problems. We describe the implementatior
our method in Section 4.1 and the common parameters of our computational experimer
Section 4.2. Our method is tested on complicated smooth and nonsmooth interfaces u
rigid and shearing passive rotation velocities in Section 4.3 and on smooth and face
interfaces moving under geometric velocities including anisotropy, topological complexi
curvature, and nonconvexity in Section 4.4. Motion under a simple nonlocal geome
velocity functional is computed in Section 4.5.

4.1. Algorithm

Our method was implemented in Standard C, following the outline below, compiled wi
the Sun C compiler and thefast optimization flag, and run on one 450 MHz CPU of a
Sun Ultra 60 under Solaris 2.7. The code was not extensively tuned for speed so timi
reported are far from optimal. The numbered steps correspond to Steps 1-9 in Section
We begin withl" =T"(t).
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. [D, ¢] =DistanceTree(L, I') [Build an L-level distance tree arouritland evaluate

the signed distance from I at tree cell vertices.]

. V =Velocity(t, T"; D, ¢) [Call a user-supplied module to evaluate the velocity or

the interface.]
T =Triangulation(D)

. W =WhitneyExtension(V, D, T) [Build the Whitney extension o¥ .]
. [D, ¥] = ContourTree (K, t, p(x + kW(X, t), t)) [Build a contour treeD resolving

the zero set of the predicted CIR solutigrdefined in Eq. (5).]
T= Triangulation (Ij)

. ' =ZeroSet (, T) [Find the zero set of on the triangulatior ]
Y =Velocity(t + k.T[; D, @)

. W=WhitneyExtension (\7, Ij, 'I:)

. [D, ¥] =ContourTree(k, t, (X + I%W()N(, )+ gW(X, t),1))

T =Triangulation(D)
I'(t +K)=ZeroSet (¢, T)

Each cell splitting in Step 4 requires new valuesjak) = (X, t) constructed by the
following sequence of operations:

4.1. Find the distance tree cé€lland subtriangle\ of C containingx.
4.2. Interpolate the nearest-point extensiolvdfom vertices ofA to get the numerical

Whitney extensiotW(x, t).

4.3. Projecix backward to the predicted characteristic pdirt X + kW(x, t).

4.4. Find the childless distance tree d@ltontainingX.

4.5. Optionally iterate locally to find the velocity and the projected p®int

4.6. Search interface elements intersecting the concentric tripl€s ib$ parent and

grandparent as necessary to find closest poit'(t) to s.

4.7. Set)(x) = (X, 1), the exact signed distance frotrto I'(t).

Step 8 is similar wittK replaced by + §W(X, t) + §W(x, t).

4.2. Parameters and Tests

Our experiments vary the initial interfac&0), the velocity functionaV, the spacetime
domain [Q a] x [—b, b]? and the following computational parameters:

L:

N:

The number of tree levels in the distance tree andjtlgpiadtreel ranges between
4 and 10, giving spatial resolution equivalent to a uniform mesh withtd@ 024
points at much lower cost.

The number of time steps from the initial time O to the final timelhe time step
k is given byk=a/N. N ranges from 10 up to 2560, while= O(h) = O(2"‘b)
balances spatial and temporal resolution.

S The number of cosine smoothing passes betweandVy, and betweemN andC.

E:

We took S= 0 except for strongly curvature-dependent velocities, wiseteO(L).
The order of ENO differentiation in local geometric velocities. There is rarely an
observable difference betwe&n= 2 andE = 3, soE is not reported.

Convergence. We refer to a computation with given values forN, andSasaL /N/S
run for brevity, or as a. /N run if S=0. We carry out several convergence studies com
paring each./N run to the nex{L + 1)/2N run, typically superimposing time-exposure



SEMI-LAGRANGIAN METHOD FOR MOVING INTERFACES 525

0° 10° 0° vs 10°
N
|

H-

TTITITITT

[ ENNE N

_.|_.

PR L

FIG. 8. Testing for grid effects: mesh and solution athd 10.

plots of the moving interface to demonstrate convergence to graphical accuracy. Interfe
errors

§ = max|p(x, )], (14)
xel'(t)
wherey is the exact signed distance function dhdl) is the computed interface, are reported
for arbitrary interfaces under passive transport and for circles shrinking under curvatur

Grid effects. Many moving interface methods suffer from grid effects which caus
anisotropic computational results to depend sensitively on the orientation of the underly
computational grid. Our method is designed to minimize grid effects and maximize isotrc
subject to the existence of an underlying square mesh. We often verify the absence of
effects by computing solutions twice: once with the mesh aligned with an axis of symme
of the problem and again at 1@ the symmetry axis. The second run is then plotted &
—10° and the two runs superimposed to demonstrate the absence of grid effects. FigL
shows this process for a threefold anisotropic computation. The small arfgtepl€ally
reveals grid effects well, by distorting propagation directions and speeds for sharp cort
propagating under anisotropic velocities.

4.3. Passive Transport

We begin validating our method by computing circles and triangles undergoing pass
transport by shear velocities
1—max0, 1 — x?—y?»*
8(x2 +y?)

Fix,y) = (=Y, %) (15)
and rigid body rotationF (x, y) = (—Y, X). The shearing velocity (15) rotates particles
around the origin at widely varying speeds, and is often used to test vortex methods
the 2-D Euler equations [17], while rigid body rotation is often used to measure dissipat
errors in advection methods [7].

We carried out four computations with smooth and nonsmooth interfaces under th
flows:

e (a) eight circles of radii between 0.4 and 1.2 distributed randomly in the dome
[-5, 5]% under shear rotation,

e (b) a single triangle of radius/2 at the origin (0, 0) in the domain-2, 2]*> under
shear rotation,

e (c) acircle of radius 12 located at (2, 2) in the domain-§, 4] under rigid rotation,
and



526

e (d) atriangle of radius A2 located at (2, 2) in the domair-§, 4]? under rigid rotation.

The shearing interfaces (a) and (b) in 9/320 runs resolved to graphical accuracy, |
graphical convergence studies of (c) and (d) after two peribdsdr), are shown in
Fig. 9.

Next, we measure the order of accuracy. Passive transport velocities are naturally def
everywhere, but we evaluate them only at the verticd3(bf. second-order time stepping
plus theO (h?) error in linear interpolation between vertices at eac® ¢f/ k) steps yields a
global error of the fornO (k?) + O(h?/k). The maximum errors in the computed interface
att =20 for shearing and =4 for rotation are tabulated and plotted in Table Il. The
observed order of accuracy varies smoothly between 1 for large time steps or the sm
well-resolved interface (c) and'2 for small time steps or the underresolved interfaces (a
(b), and (d). The expected(N log N) cost per step is verified by the scaled CPU second

9/320

JOHN STRAIN

t =100

OQO
O

Q O
SR

9/320 t=10 t=20
7/80 8/160 9/320
Q0 ONQ) ONQ)
O O O
o© oC oC
7/80 8/160 9/320

&7&

EA

VA4

FIG. 9. Shearing and rotating circles and triangles under passive transport.

T/NL reported in Table II.
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TABLE Il

Maximum Interfacial Errors & and CPU Secondd versus Leveld. and Time StepsN

for Passive Shearing and Rigid Rotation

527

(a) Shearing circles at= 20 on [-5, 5]

L\N 10 20 40 80 160 320 640 1280 2560 T/NL
6 0.220 A77 .246 .338 .362 — — — — 0.135
7 — .081 .108 147 .225 .285 — — — 0.309
8 — — .032 .052 .082 119 .165 — — 0.645
9 — — — .017 .029 .050 .072 .094 — 1.311
10 — — — — .009 .017 .030 .044 .058 2.625
(b) Shearing triangle dt= 20 on [-2, 2]?
L\N 10 20 40 80 160 320 640 1280 2560 T/NL
6 0.247 147 151 147 .185 — — — — 0.050
7 — .077 .084 .088 .098 133 — — — 0.117
8 — — .043 .045 .051 .065 .086 — — 0.283
9 — — — .020 .024 .033 .048 .065 — 0.651
10 — — — — .012 .016 .023 .033 .048 1.361
(c) Rotating unit circle at =4z on [—4, 4]?
L\N 10 20 40 80 160 320 640 1280 2560 T/NL
6 1.060 .806 .254 .168 .347 — — — — 0.016
7 — .803 .210 .071 .069 135 — — — 0.031
8 — — .198 .048 .024 .031 .064 — — 0.064
9 — — — .043 .013 .009 .015 .032 — 0.128
10 — — — — .011 .004 .004 .008 .016 0.254
(d) Rotating unit triangle at= 4z on [—4, 4]?
L\N 10 20 40 80 160 320 640 1280 2560 T/NL
6 1.130 .970 .249 222 291 — — — — 0.021
7 — .996 .223 118 137 .200 — — — 0.043
8 — — 242 .078 .072 .096 141 — — 0.093
9 — — — .062 .038 .050 .068 .100 — 0.190
10 — — — — .024 .025 .034 .047 .069 0.388
(a) (b (c) (d
9 9 9
s
s L, sl §bnlbpa,
b It s Y
N2l T ; 7 ; ital
o
1 5 9 1 5 9 1 5 9 1 5 9
—logy, & vs —logy k
(a) (b (©) (d
9 9 9
/
sl /2 A e sl L, slis
Ve, L 1/ .
[ Ay Awizce
2 10 18 2 10 18 2 10 18 2 10 18

—log, 6 vslog, T
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SRR S S
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FIG. 10. Right and wrong corner motion with unit normal velocity.

4.4. Local Geometric Velocities

We validate our method by computing accurate converged interfaces moving unde
variety of local geometric velocities, including

e correct viscosity solutions for corners and complex shapes growing and merging w
unit normal velocity,

e regularly faceted shapes growing and shrinking under anisotropic normal velocitie

e irregularly faceted “Wulff shapes” [21] with random angles,

e complex multiply connected faceted growth patterns, and

e simple and complex shapes shrinking under mean curvature and nonlocal volul
preserving mean curvature flows.

4.4.1. Viscosity solutions with cornersCorrect computation of “viscosity solutions”
for faceted interfaces in geometric problems depends on moving a corner in or out with (
normal velocity. Inward motion should keep corners sharp, while outward motion shot
produce rounded corners due to Huygens’ principle. Even starting fremasthclosed
curverl’, inward motion along the normal with unit speed will develop a corner in time ¢
most I/ max- C. Straightforward moving interface methods can easily produce the incorre
viscosity solutions shown in Fig. 10.

Our method computes the correct viscosity solution for a triangle growing and shrir
ing with unit normal velocity. We superimpos¢Z® over §40 runs in Fig. 11, to show

0°: 5/20 vs 6/40 7/80: 0° vs 10° 10°: 5/20 vs 6/40

J

FIG. 11. Triangles growing and shrinking with unit normal velocity: convergence of viscosity solutions an
absence of grid effects.



SEMI-LAGRANGIAN METHOD FOR MOVING INTERFACES 529

6,/40 vs 7/80 8/160 vs 9,/320

FIG. 12. Clovers merging with unit normal velocity for9t < 2.5 on [-3, 3]°.

convergence to graphical accuracy, ahd@er 10 runs at resolution 7/80, to show absence
of grid effects.

Complex interfaces grow and merge correctly in Fig. 12. The manifold corners a
changes of topology are computed automatically and easily. In particular, outward-mov
inward-pointing corners remain correctly sharp, as the viscosity solution theory requit
The final area enclosed by the computed interface is 35.67937, 35.72377, 35.74304,
35.75297, respectively, and shows smooth monotone first-order convergence.

4.4.2. Anisotropic normal velocity and the Wulff limitAnisotropic motion along the
normal vector connects moving interfaces to Hamilton—Jacobi equations

¢+ H(Ve) =0, (16)

which encounter difficulties when the Hamiltonikinis nonconvex. For anisotropic normal
velocities

V = R+ e cogke), (17)
the HamiltonianH is nonconvex—and some Hamilton—Jacobi methods break down—if
R+e(l—k? <0< R—|e|. (18)

We evolve an initially unit-circular interface under anisotropic normal velocities (17) pra
ducing nonconvex Hamiltonians, witR= 1 andR + (1 — k?) = — 4. Figure 13 compares
7/128 and 8/256 runs for@t < 8 on [-9, 9]? and tree meshes tilted &t,A.0°, and 180/ k
for k=3, 4, 5, and 6. Grid effects are almost invisible and the interface grows rapic
into the regularly faceted Wulff shape with the correct anisotropy. Figure 14 shows simi
results for shrinking.

We also test our method on random polygonal Wulff shapes with nonuniform corr
angles. These shapes arise from velocities of the form

V = R(1+ esina (), (19)

whereo is the piecewise-smooth function
0 — 0;

o) =7 —H—
0j+1—0;

for 0 <60 <011 (20)

and —7 =6p<6; < --- <6,=m are given angles. Motion by Eqg. (19) witRe >0
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FIG. 13. Circles growing into asymptotic Wulff shapes.

produces facets perpendicular to the anglgswith acute corners rounded. Figure 15
shows polar plots of these velocities with= 3/4 ande = 1/2, the corresponding Wulff
shapes, and interfaces moving under Eq. (19) fotG< 10 on [-12, 12, and demonstrates
excellent agreement between computation and theory [21].

<
I

-1~ 4cos(36) V =—1-— 2 cos(56) V =—1— 2 cos(66)

FIG. 14. Radius 3.5 circles shrinking into the asymptotic Wulff shapes: 6/40 vs 7/80 runsfor<®2 on
[—4, 412
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—r<—nf6<T/3< T

@ O
5

< —nf3< —w/6<T/6<3IN/5< T

©

FIG. 15. Circles growing into irregular Wulff shapes: polar plots\of9), 7/128 runs for growing interfaces,
and comparisons.

4.4.3. Merging under anisotropyWe validate the topological robustness of the numer
ical method by starting from a collection of randomly placed and sized circles and movi
the interface along its normal with an anisotropic sp¥ed 2+ cog56 + 0.1). Figure 16
shows the mechanism which transforms this highly nonconvex initial interface into t
asymptotic pentagonal Wulff shapetas- co. The 6-level tree meshes at times 0, 40, anc
80 are shown, to emphasize the resolution obtained by building the quadtree root ce
enclose the current interface. When an initially small interface grows larger by an ordel
magnitude, the resolution improves by an order of magnitude as well. Thus,328 8in

6/80 7/160 8/320

[TTT

FIG. 16. Bubbles merging into the asymptotic Wulff shape.
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4/20/1 vs 5/40/1 5/40/1 vs 6/80/2 6/80/2 vs 7/160/2

7/160/2 vs 8/320/3 8/320/3 vs 9/640/3 9/640/3

FIG. 17. Circles shrinking withv =C for 0<t <2in [—4, 4]2.

shown—uwhich required 21 min CPU time—would have required 1.5 days of CPU tin
with a fixed domain sized to fit the final interface.

4.4.4. Circles shrinking under curvatureA classic geometric problem shrinks a plane
curve with velocity equal to its curvature, and forms a useful test case for curvatu
dependent velocity. A circle shrinking with = C has exact radius

Rt) = /R(0)2 — 2,

so with R(0) = +/5, a circle should shrink to radius 1 at tirhe= 2. A smaller circle with
R(0)=1 vanishes completely in time=1/2. Figure 17 shows convergence to graphica
accuracy, computed with 20 through 640 time steps on quadtrees with 4 through 9 lev
and plotted every 0.2 time units fram= 0 tot = 2 on the domain{-4, 4]%>. CPU seconds per
step and maximum errors in the large circle locatioRat 1,t = 2 are reported and plotted
in Table 11l and display clear first-order convergence along diagokal$(h). Along
vertical columns the error is dominated by t@&h?/k) term due to polygonal interface
approximation aD(1/k) steps.

4.4.5. Nonconvex interfaces under curvaturé. geometric theorem [3] predicts that
any smooth embedded plane curve should collapse to a round point and vanish in finite 1
under curvature flow/ = C. We verify that our method behaves correctly for two complex
polygonal shapes, with the convergence studies shown in Figs. 18 and 19.

4.5. A Nonlocal Geometric Velocity

Many important moving interface problems arenlocal—the normal velocity at each
pointy depends on all of'(t) and even on its historfl"(s) | 0 < s <t}. In this section, we
test our method on the simplest nonlocal geometric velocity

F= (c— fWCdS) N. (21)

fm) 1lds
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TABLE Il

533

Maximum Error § at R=1,t=2 and CPU Secondd per Step versus NumberN of Time
Steps and NumberL of Tree Levels in Two Circles Shrinking under Curvature for 0 <t <2

on [—4, 47
(a) Minimal smoothing
L/S N=10 20 40 80 160 320 640 1280 2560 T/NL
4/1 .143 179 .290 493 .991 — — — — .020
5/1 — .037 .069 122 .248 518 — — — .041
6/2 — — .021 .034 .063 21 .239 — — .085
72 — — — .010 .017 .031 .059 114 — .164
8/3 — — — — .005 .008 .015 .029 .056 .324
(b) Natural smoothing
L/S N=10 20 40 80 160 320 640 1280 2560 T/NL
4/1 .143 179 .290 493 .991 — — — — .021
5/2 — .050 .080 139 .250 523 — — — .044
6/3 — — .025 .037 .067 124 .244 — — .089
714 — — — .012 .018 .032 .060 115 — .180
8/5 — — — — .005 .008 .015 .029 .057 .363
(a) (b (a) (b
9 9 9 9
A S / " ry
5 AL ] s ///,/. sl s/ /0
v L4000 VLA Ly Iy,
1 1271 AN L :
7 vy {
5 9 1 5 9 2 10 18 2 10 18

—log, 6 vs —log, k

—log, 6 vslog, T

This velocity smooths the moving interface by curvature while preserving the area ins
the interface, so arbitrary shapes become round points but the interface does not va
Small isolated pieces disappear and their area is transferred to large pieces.

We study a tilted square spiral unwinding under this velocity in Fig. 20, where 7/512
and 8/1024/2 runs converge to graphical accuracy. The 7/512/1 run took 18 min of C
time and conserved area to within 0.9% of its initial value. Each successive refinem
qguadruples the CPU time and halves the area error, confirming the exji@dieidg N)
cost pertime step and first-order accuracy. The interface is shown at geometrically increa
timest =0, 0.005, 0.01, 0.02, ... ., 2.56, because its motion slows dramatically as curvatur
variation decreases toward its final steady state.

6/160/1

7/320/1

8/640/2 vs 9/1280/2

FIG. 18. Tilted polygon shrinking under curvature flow.



7/320/1 vs 8/640/1 t=.05 t=.10
t=.5 t=1.0 t=15
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FIG. 19. Tilted square spiral unwinding under curvature flow.

7/512/1 vs 8/1024/2

t = .005

P

elm=

t=128

t = 2.56

8/1024/2 vs 9/2048/3

O
O

O

FIG. 20. Spiral unwinding under volume-preserving flow by curvature.
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8/1024/2 vs 9/2048/3 t=.005 t=.01
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FIG. 21. Trefoils merging under volume-preserving flow by curvature.

Figure 21 superimposes 8/1024/2 and 9/2048/3 runs for a collection of trefoil-shaj
bubbles moving under Eq. (21). Convergence to graphical accuracy is evident. The 8/10
computation took 31 min CPU time and conserved the initial area within 8% accuracy. T
9/2048/3 computation took 140 min CPU time and lost 4% of its area=hg.56.
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